Soft Dynamics simulation. 2. Elastic spheres undergoing a T(1) process in a viscous fluid.
نویسندگان
چکیده
Robust empirical constitutive laws for granular materials in air or in a viscous fluid have been expressed in terms of timescales based on the dynamics of a single particle. However, some behaviours such as viscosity bifurcation or shear localization, observed also in foams, emulsions, and block copolymer cubic phases, seem to involve other micro-timescales which may be related to the dynamics of local particle reorganizations. In the present work, we consider a T(1) process as an example of a rearrangement. Using the Soft Dynamics simulation method introduced in the first paper of this series, we describe theoretically and numerically the motion of four elastic spheres in a viscous fluid. Hydrodynamic interactions are described at the level of lubrication (Poiseuille squeezing and Couette shear flow) and the elastic deflection of the particle surface is modeled as Hertzian. The duration of the simulated T(1) process can vary substantially as a consequence of minute changes in the initial separations, consistently with predictions. For the first time, a collective behaviour is thus found to depend on a parameter other than the typical volume fraction of particles.
منابع مشابه
Coupled motion of microscale and nanoscale elastic objects in a viscous fluid.
We study the coupled dynamics of two closely spaced micron or nanoscale elastic objects immersed in a viscous fluid. The dynamics of the elastic objects are coupled through the motion of the surrounding viscous fluid. We consider two cases: (i) one object is driven externally by an imposed harmonic actuation force and the second object is passive and (ii) both objects are driven by a Brownian f...
متن کاملNumerical simulation of flow hydrodynamic around dolphin body in viscous fluid
The biomimetic and hydrodynamic study of aquatic animals is one of the most challenging computational fluid dynamics topics in recent studies due to the complexity of body geometry and the type of flow field. The movement of the aquatic body, and particularly the tail section and the corresponding movement of fluid around the body, causes an unsteady flow and requires a comprehensive study of t...
متن کاملGelation on the microscopic scale.
Particle-tracking methods are used to study gelation in a colloidal suspension of Laponite clay particles. We track the motion of small fluorescent polystyrene spheres added to the suspension, and obtain the micron-scale viscous and elastic moduli of the material from their mean-squared displacement. The fluorescent spheres move subdiffusively due to the microstructure of the suspension, with t...
متن کاملSwimming of an assembly of rigid spheres at low Reynolds number.
A matrix formulation is derived for the calculation of the swimming speed and the power required for swimming of an assembly of rigid spheres immersed in a viscous fluid of infinite extent. The spheres may have arbitrary radii and may interact with elastic forces. The analysis is based on the Stokes mobility matrix of the set of spheres, defined in low Reynolds number hydrodynamics. For small a...
متن کاملEffect of inertia on laminar swimming and flying of an assembly of rigid spheres in an incompressible viscous fluid.
A mechanical model of swimming and flying in an incompressible viscous fluid in the absence of gravity is studied on the basis of assumed equations of motion. The system is modeled as an assembly of rigid spheres subject to elastic direct interactions and to periodic actuating forces which sum to zero. Hydrodynamic interactions are taken into account in the virtual mass matrix and in the fricti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European physical journal. E, Soft matter
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2009